提供可靠的连接到蜂窝连接的无人机可以非常具有挑战性;它们的性能高度取决于周围环境的性质,例如地面BSS的密度和高度。另一方面,高层建筑可能阻断来自地面BS的不期望的干扰信号,从而提高了UVS与其服务BS之间的连接。为了解决此类环境中的无人机的连接,本文提出了一种RL算法,以动态优化UAV的高度,因为它在通过环境中移动,目标是提高其经历的吞吐量。所提出的解决方案是使用来自爱尔兰都柏林市中心的两个不同地点的实验获得的测量来评估。在第一场景中,UAV连接到宏小区,而在第二场景中,UAV将在双层移动网络中关联到不同的小单元。结果表明,与基线方法相比,该溶液的吞吐量增加了6%至41%。
translated by 谷歌翻译
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human `receptors' and therefore blurs the difference of virtual and real environments. We commence by highlighting the compelling use cases empowered by the IoS and also the key network requirements. We then elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms along with 6G technologies may satisfy the requirements of IoS use cases. On one hand, semantic communications can be applied for extracting meaningful and significant information and hence efficiently exploit the resources and for harnessing a priori information at the receiver to satisfy IoS requirements. On the other hand, AI/ML facilitates frugal network resource management by making use of the enormous amount of data generated in IoS edge nodes and devices, as well as by optimizing the IoS performance via intelligent agents. However, the intelligent agents deployed at the edge are not completely aware of each others' decisions and the environments of each other, hence they operate in a partially rather than fully observable environment. Therefore, we present a case study of Partially Observable Markov Decision Processes (POMDP) for improving the User Equipment (UE) throughput and energy consumption, as they are imperative for IoS use cases, using Reinforcement Learning for astutely activating and deactivating the component carriers in carrier aggregation. Finally, we outline the challenges and open issues of IoS implementations and employing semantic communications, edge intelligence as well as learning under partial observability in the IoS context.
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Although recent deep learning-based calibration methods can predict extrinsic and intrinsic camera parameters from a single image, their generalization remains limited by the number and distribution of training data samples. The huge computational and space requirement prevents convolutional neural networks (CNNs) from being implemented in resource-constrained environments. This challenge motivated us to learn a CNN gradually, by training new data while maintaining performance on previously learned data. Our approach builds upon a CNN architecture to automatically estimate camera parameters (focal length, pitch, and roll) using different incremental learning strategies to preserve knowledge when updating the network for new data distributions. Precisely, we adapt four common incremental learning, namely: LwF , iCaRL, LU CIR, and BiC by modifying their loss functions to our regression problem. We evaluate on two datasets containing 299008 indoor and outdoor images. Experiment results were significant and indicated which method was better for the camera calibration estimation.
translated by 谷歌翻译
在计算机视觉应用中广泛采用深度神经网络引起了对对抗性鲁棒性的重大兴趣。现有的研究表明,专门针对给定模型量身定制的恶意扰动输入(即,对抗性示例)可以成功地转移到另一个受过独立训练的模型中,以引起预测错误。此外,这种对抗性示例的属性归因于数据分布中的预测模式得出的特征。因此,我们有动力调查以下问题:对抗性防御,例如对抗性例子,可以成功地转移到其他受过独立训练的模型中?为此,我们提出了一种基于深度学习的预处理机制,我们将其称为可鲁棒的可转移功能提取器(RTFE)。在研究了理论动机和含义后,我们在实验上表明,我们的方法可以为多个独立训练的分类器提供对抗性的鲁棒性,这些分类器原本是对自适应白盒对手的无效性。此外,我们表明RTFE甚至可以为在不同数据集中独立训练的模型提供单发对手的鲁棒性。
translated by 谷歌翻译
在过去的十年中,基于深度学习的算法在遥感图像分析的不同领域中广泛流行。最近,最初在自然语言处理中引入的基于变形金刚的体系结构遍布计算机视觉领域,在该字段中,自我发挥的机制已被用作替代流行的卷积操作员来捕获长期依赖性。受到计算机视觉的最新进展的启发,遥感社区还见证了对各种任务的视觉变压器的探索。尽管许多调查都集中在计算机视觉中的变压器上,但据我们所知,我们是第一个对基于遥感中变压器的最新进展进行系统评价的人。我们的调查涵盖了60多种基于变形金刚的60多种方法,用于遥感子方面的不同遥感问题:非常高分辨率(VHR),高光谱(HSI)和合成孔径雷达(SAR)图像。我们通过讨论遥感中变压器的不同挑战和开放问题来结束调查。此外,我们打算在遥感论文中频繁更新和维护最新的变压器,及其各自的代码:https://github.com/virobo-15/transformer-in-in-remote-sensing
translated by 谷歌翻译
使用变压器模型,多语言神经机器的翻译一直显示出巨大的成功。部署这些模型是具有挑战性的,因为它们通常需要各种语言的大词汇(词汇)尺寸。这限制了在上一个词汇投影层中预测输出令牌的速度。为了减轻这些挑战,本文提出了一种通过聚类的快速词汇投影方法,该方法可用于GPU上的多语言变压器。首先,我们脱机将词汇搜索空间分为不同的结合群,鉴于解码器输出的隐藏上下文向量,这导致词汇投影的词汇列要小得多。其次,在推理时,提出的方法预测了词汇投影中隐藏上下文向量的簇和候选候选代币。本文还包括对在多语言环境中构建这些群集的不同方式的分析。我们的结果表明,FLOAT16 GPU推断中的端到端速度增长高达25%,同时保持BLEU得分并略有增加记忆成本。所提出的方法将词汇投影步骤加速自身最多2.6倍。我们还进行了广泛的人类评估,以验证所提出的方法保留了原始模型的翻译质量。
translated by 谷歌翻译
可持续性需要提高能源效率,而最小的废物则需要提高能源效率。因此,未来的电力系统应提供高水平的灵活性IIN控制能源消耗。对于能源行业的决策者和专业人员而言,对未来能源需求/负载的精确预测非常重要。预测能源负载对能源提供者和客户变得更有优势,使他们能够建立有效的生产策略以满足需求。这项研究介绍了两个混合级联模型,以预测不同分辨率中的多步户家庭功耗。第一个模型将固定小波变换(SWT)集成为有效的信号预处理技术,卷积神经网络和长期短期记忆(LSTM)。第二种混合模型将SWT与名为Transformer的基于自我注意的神经网络结构相结合。使用时频分析方法(例如多步预测问题中的SWT)的主要限制是,它们需要顺序信号,在多步骤预测应用程序中有问题的信号重建问题。级联模型可以通过使用回收输出有效地解决此问题。实验结果表明,与现有的多步电消耗预测方法相比,提出的混合模型实现了出色的预测性能。结果将为更准确和可靠的家庭用电量预测铺平道路。
translated by 谷歌翻译
面部检测和识别是人工智能系统中最困难,经常使用的任务。这项研究的目的是介绍和比较系统中使用的几种面部检测和识别算法的结果。该系统始于人类的训练图像,然后继续进行测试图像,识别面部,将其与受过训练的面部进行比较,最后使用OPENCV分类器对其进行分类。这项研究将讨论系统中使用的最有效,最成功的策略,这些策略是使用Python,OpenCV和Matplotlib实施的。它也可以用于CCTV的位置,例如公共场所,购物中心和ATM摊位。
translated by 谷歌翻译